Check out our new paper: Evolutionary perspective of cancer: myth, metaphors and reality.
Evolutionary Applications. DOI: 10.1111/eva.12265
Check out our new paper: Evolutionary perspective of cancer: myth, metaphors and reality.
Evolutionary Applications. DOI: 10.1111/eva.12265
Check out our new publication: Cancer: an emergent property of disturbed resource-rich environments? Ecology meets personalized medicine.
Evolutionary Applications. Article first published online : 26 MAR 2015, DOI: 10.1111/eva.12232
Cancer is a complex disease, with sophisticated cellular mechanisms as the targets of evolutionary processes driven by random genetic and epigenetic mutations. Oncogenesis is evolutionarily linked to stem cell numbers/mutations and organ/body size; therefore, inter-disciplinary frameworks across different scales (cellular, tissue, organs and species) are necessary to decipher cancer progression.
Check out our new article @http://onlinelibrary.wiley.com/doi/10.1002/bies.201500012/abstract
Title: Infected Tasmanian devils reveal how cancer cells evolve in response to humans
Tasmanian Devil Facial Tumor Disease (DFTD) has ravaged the world’s largest carnivorous marsupial since it emerged in 1996, resulting in a population decline of over 90%.
Conservation work to defeat the disease has including removing infected individuals from the population and new research explains how this gives us a unique opportunity to understand how human selection alters the evolution of cancerous cells.
DFTD is an asexually reproducing clonal cell line, which during the last 16 years has been exposed to negative effects as infected devils, approximately 33% of the population, have been removed from one site, the Forestier Peninsula, in Tasmania between 2006 and 2010.
Naïve large Australian varanid lizards have recently been shown to suffer a massive increase in mortality (> 95%) when attempting to feed on this toxic amphibian. The high susceptibility of Australian varanids to toad toxin is caused by minor mutations in the sodium-potassium-ATPase enzyme.
In the present study we show that Komodo dragons (Varanus komodoensis) have similar mutations within this enzyme as observed in Australian varanids demonstrating that dragons are extremely susceptible to toad toxin. During the last decade the black-spined toad (Bufo melanostictus) has been able to invade areas close to the five toad-free islands constituting the habitat of Komodo dragons. An invasion of highly toxic black-spined toads into dragon habitats may therefore cause similar dramatic increase in dragon mortality as recorded in Australian varanids imperiling the long-term survival of this giant and iconic lizard.
Ujvari et al. 2015 Pacific Conservation Biology 20: 363-365.