Demography and spatial requirements of the endangered northern quoll on Groote Eylandt

Authors: Jaime Heiniger, Skye F. Cameron, Thomas Madsen, Amanda C. Niehaus and Robbie S. Wilson

Source: Wildlife Research (May 2020)

Pic by: Wildlife Explorer / CC BY (https://creativecommons.org/licenses/by/3.0)

Brief summary of the paper:

Context: Australia has experienced the highest number of mammal extinctions of any continent over the past two centuries. Understanding the demography and spatial requirements of populations before declines occur is fundamental to confirm species trajectory, elucidate causes of decline and develop effective management strategies.

Aims: We evaluated the demography and spatial requirements of a northern quoll, Dasyurus hallucatus, population on Groote Eylandt, Northern Territory. Groote Eylandt is considered a refuge for the species because key threatening processes are absent or limited; cane toads and introduced ungulates are absent, feral cats are infrequently detected and the fire regime is benign compared with mainland Northern Territory.

Methods: We conducted a 4-year capture–mark–recapture study to monitor growth, reproduction and survival of northern quolls within a 128-ha area, and we evaluated spatial requirements by attaching GPS units to both sexes. To assess the status of the Groote Eylandt population, we compared the demographics with existing data from mainland populations.

Key results: The average density of northern quolls was 0.33 ha¯¹. However, there was a 58% decline in female density, primarily between 2012 and 2013, corresponding with a decrease in female body mass. Females survived and bred in up to 3 years and adult survival rates did not vary among years, suggesting that juvenile recruitment drives population fluctuations. Male quolls were semelparous, with die-off occurring in the months following breeding. The median female and male home ranges were 15.7 ha and 128.6 ha respectively, and male ranges increased significantly during breeding, with 1616 ha being the largest recorded.

Conclusions: The northern quoll population on Groote Eylandt had a higher density, female survival and reproductive success than has been previously recorded on the mainland. However, a marked decline was recorded corresponding with a decrease in female mass, indicating below-average rainfall as the likely cause.

Implications: Groote Eylandt remains a refuge for the endangered northern quoll. However, even in the absence of key threatening processes, the population has declined markedly, highlighting the impact of environmental fluctuations. Maintaining the ecological integrity of Groote Eylandt is imperative for population recovery, and managing threats on the mainland over appropriate spatial scales is necessary to increase population resilience.